Roll No.

328352(28)

B. E. (Third Semester) Examination, April-May 2021

(New Scheme)

(Et & T Branch)

PROBABILITY and RANDOM VARIABLES

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) of each question is compulsory. Attempt any two parts from (b), (c) and (d). All questions carry equal marks.

Unit-I

 (a) State and prove the convolution property of Fourier Transform.

[3]

- 2. (a) State and prove the Baye's theorem.
 - (b) A company sells high fidelity amplifiers capable of generating 10, 25 and 50 W audio power. It has on hand 100 of the 10 W units, of which 15% are defective, 70 of the 25 W units with 10% defective, and 30 of the 50 W units with 10% defective. What is the probability that an amplifier sold from the 10 W units is defective? If each wattage amplifier sells with equal likelihood, what is the probability of a randomly selected unit being 50 W and defective? What is the probability that a unit randomly selected for sale is defective?
 - (c) In a communication system the signal send from point a to point b arrives by two paths as shown in figure. All repeaters fail independently of each other. The probability of failing of repeaters are

- (b) A train of rectangular pulses, making excursions from zero to 1 volt, have a duration of 2 μ sec and are separated by intervals of 10 μ sec. Assume that the center of one pulse is located at t=0, write the exponential Fourier series for the pulse train and plot the spectral amplitude as a function of frequency. Also draw the envelope.
- (c) A waveform m(t) has a Fourier transform M(f) whose magnitude is as shown.

- (i) Find the normalized energy content of the waveform.
- (ii) Calculate the frequency f_1 such that one-half of the normalized energy is in the frequency range $-f_1$ to f_1 .

Find the probability that the signal will not arrive at point b.

- (d) Spacecrafts are expected to land in a prescribed recovery zone 80% of the time. Over a period of time, six spacecrafts land.
 - (i) Find the probability that none of them lands in the prescribed zone.
 - (ii) Find the probability that at least one lands in the prescribed zone.

[5]

(iii) The landing program is called successful if the probability is 0.9 or more that 3 or more out of the six spacecrafts will land in the prescribed zone. Is the program successful?

Unit-III

- 3. (a) Define Probability Density function. State the various properties of Probability density function.
 - (b) Consider an experiment of "Rolling of 2 dice". Take the random variable as "the sum of two numbers that show on the dice" and find the corresponding cumulative distribution function.
 - c) Certain random variable has CDF as given

$$F_X(x) = \begin{cases} 0 & \text{for } x < 0 \\ Kx^2 & \text{for } 0 \le x \le 10 \\ 100 K & \text{for } x > 10 \end{cases}$$

Find the value of K and the corresponding pdf. Also find $P\{X \le 5\}$ and $P\{5 \le X \le 7\}$ and draw the plots of CDF and pdf.

$$f_X(x) = \begin{cases} \left(\frac{x}{200}\right) \exp\left(-\frac{x^2}{400}\right) & \text{for } x \ge 0\\ 0 & \text{for } x < 0 \end{cases}$$

- (i) What is the probability that the system will not last a full week?
- (ii) What is the probability that the system lifetime will exceed one year?

- Define Random process.
 - Consider the random process $V(t) = \cos(w_0 t + \phi)$ where ϕ is a random variable which is uniformly distributed in the range of $(-\pi, \pi)$.
 - (i) Show that the 1st and 2nd moments of V(t)are independent of time.

(ii) Show that V(t) is wide-sense stationary process.

Let two random processes X(t) and Y(t) be defined as:

[7]·

$$X(t) = A\cos(w_0 t) + B\sin(w_0 t)$$

$$Y(t) = B\cos(w_0 t) - A\sin(w_0 t)$$

Where A and B are random variables and w_0 is a constant. X(t) is Wide-Sense Stationary since Aand B are uncorrelated, zero-mean Random variables with the same variances. With the same constraints on A and B, Y(t) is also Wide-Sense Stationary. Show that X(t) and Y(t) are jointly Wide-Sense Stationary.

Explain the Poisson Random Process

Unit-V

- Define Cross-Power density spectrum.
 - A wide-sense stationary process X(t) has an autocorrelation function

328352(28)

PTO

$$R_{XX}(\tau) = \left\{ A_0 \left[1 - \left(|\tau|/T \right) \right] \text{ for } -T < =T \text{ and } 0 \text{ elsewhere} \right\}$$

Where T > 0 and A_0 is a constant. Determine the power spectrum.

Determine the cross-correlation function corres-(c) ponding to the cross-power density spectrum

$$\mathcal{S}_{XY}(\omega) = \begin{cases} a + \frac{jb\omega}{w} & -W < \omega < W \\ 0 & \text{elsewhere} \end{cases}$$

Virtables (with the same variances. Velawhere $\alpha > 0$ is a constant.

- (d) What is the relationship between cross-power spectrum and cross-correlation function of X(t)and Y(t).
 - 7